
MULTIPLAYER GAME 
CHEATING PREVENTION 
WITH PIPELINED LOCKSTEP PROTOCOL 

Ho Lee, Eric Kozlowski, Scott Lenker, Sugih Jamin 
Electrical Engineering and Computer Science Department 
University of Michigan, Ann Arbor 
{Ieehz, ekozlow, slenker, jamin}@eecs.umich.edu 

Abstract Multiplayer games are becoming more and more popular. One of the 
reasons is that they let geographically distant players play together. We 
first look at a synchronization protocol and a protocol for prevention of 
common cheating techniques in real-time multiplayer games. We then 
propose an optimization to the current cheat-proofing techniques which 
takes advantage of synchronization delay inherent in current implemen­
tation of multiplayer games. Previous work has studied synchronization 
techniques [1) and cheat-proofing techniques [2) in isolation, without ex­
ploring their interaction. Our optimization has the same guarantee as 
current cheat-proofing techniques and can increase interaction rate be­
tween players in real-time multiplayer games. 

1. Multiplayer Games 
Systems can use a centralized or distributed approach for commu­

nication in multiplayer games. A centralized approach, where all game 
clients use a single server, provides simplicity in synchronization because 
all of the communication takes place through a central point. Many cur­
rent multiplayer games use the approach where one player configures a 
machine as a server, and other players connect to it. 

To increase the scalability of multiplayer games, a distributed ap­
proach can be used. The distributed approach requires each client to 
independently compute the game state. To make sure players correctly 
compute the same game state, the system needs synchronization sup­
port. The distributed approach provides more opportunities for players 
to cheat since there is no central authority controlling the game play. 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35660-0_65

© IFIP International Federation for Information Processing 200
R. Nakatsu et al. (eds.), Entertainment Computing

3



32 Ho Lee, Eric Kozlowski, Scott Lenker, Sugih Jamin 

Our work in this paper focuses on the distributed approach to multi­
player games. 

As distributed architectures for multiplayer games become more pop­
ular, much work is being done in the areas of synchronization, cheat­
proofing and scalability. Below we look at techniques currently used in 
each of these areas. Then we propose an optimization to enhance the 
interactivity of the current cheat-proofing techniques. 

1.1. Network Delay and Bucket Synchronization 
The distributed approach requires each client to independently com­

pute the game state. However, due to network delay, players may have 
different views of the game. For example, in a first person shooter game, 
player A, at time t, shoots at coordinate (2, 3) which is the location of 
player B according to her view. But just right before time t, player B 
moves from (2,3) to (3,3). Due to network delay, player A does not see 
player B's move until after time t. The view of player A is that her shot 
was successful. However, the view of player B is player A missed her 
shot. This leads to an inconsistent game state. 

The above example illustrates the need for systems to have synchro­
nization support to ensure that players' views are consistent. Consis­
tency means that actions by all players are processed at the same time 
and that all sessions display their game states simultaneously. Currently, 
the main synchronization scheme used is bucket synchronization [1]. 

Bucket synchronization breaks time up into segments, and represents 
each segment with a bucket. As other players' moves packets are re­
ceived, in the form of network packets, they are inserted into their asso­
ciated bucket according to their timestamps. Moves occur at the game's 
virtual time and are delayed for a set time before being processed. This 
allows for packets to be sent across the network and placed into appro­
priate buckets along with all other players' actions issued for that time 
segment. The length of each segment is dependent on the frame-rate the 
game can handle. Once the current time reaches that of a bucket, all 
of the packets are taken out of the bucket and processed into the game 
state. 

1.2. Cheating and Cheating Techniques 
The distributed approach provides more opportunities for players to 

cheat since there is no central authority controlling the game play. Baugh­
man and Levine presented two common methods of cheating for real-time 
multiplayer games: lookahead cheat and suppress-correct cheat [2]. The 
lookahead cheat takes advantage of the interaction resolution required 



Multiplayer Game Cheating Prevention with Pipelined Lockstep Protocol 33 

E E 8 E 
0 0 0 0 
0 0 
0 

Network Delay Estimate 

Figure 1. Bucket synchronization representation with time segment length of lOms. 

at each discrete unit of time (per round, or per frame). A player can 
cheat by waiting until all other players have sent their decisions and 
then calculate its move based on the moves received. In games that use 
bucket synchronization, lookahead cheat can be in the form of modi­
fying packets' timestamps. Under the bucket synchronization scheme, 
a received packet does not update the game state immediately, but is 
instead put into a bucket until the bucket's time arrived. A cheating 
player can claim that an event has happened earlier than it actually has 
by putting an earlier timestamp in the packet. For example, a cheating 
player, on seeing a lethal shot at bucket time t, can immediately send 
out a packet that claims she has moved to another location at bucket 
time t - 1. In this way, she can prevent other players from successfully 
killing her. 

Suppress-correct cheat takes advantage of dead-reckoning, which is a 
technique used to accommodate packet loss and network transmission 
delay by allowing a game client to estimate the state of other players 
based on their recent vectors when their packets are not received on 
time. For example, when a position packet is not received on time, the 
position of the corresponding player can be estimated by its velocity, 
calculated based on previous moves, and the time since the last move. 
A cheater cheating through suppress-correct cheat can purposefully not 
send packets to reveal its current state, and then uses knowledge of 
the current states of other players to construct an update packet for a 
future move, which provides the player with an advantage. Suppress­
correct cheat is possible only when dead-reckoning is used. The protocols 
presented in this paper and in [2] do not allow for dead-reckoning. 



34 Ho Lee, Eric Kozlowski, Scott Lenker, Sugih Jamin 

1.3. Cheat-proofing Protocols and Their 
Limitation 

Baughman and Levine proposed two cheat-proofing protocols: the 
lockstep (LS) protocol and its optimization, the asynchronous synchro­
nization (AS) protocol [2]. 

In distributed games without any cheat-proofing guarantees, players 
send their moves to other players without any specific constraints. This 
makes it difficult to prevent cheating. Under the LS protocol, each player 
first sends a cryptographically secure one-way hash of her decision as a 
commitment and waits for other players' commitments. After receiv­
ing other players' commitments, each player then reveals her decision in 
plain text. Players can verify if other players' moves are valid by cal­
culating a hash from the plain text and then comparing the result with 
the commitment. As a result of this requirement, dead reckoning is not 
allowed in the LS protocol. Since the LS protocol involves sending two 
packets for each move and waiting for other players' commitments, it 
requires longer latency for each move.1 To increase the event generation 
rate, the AS protocol was proposed and a notion of Zone of Control 
(ZoC)2 was used. A player's ZoC is defined as the area of the game 
in which the player can possibly be affected by another player in the 
next turn, and therefore resolution with other players' decisions is re­
quired [4). Under the AS protocol, a pair of players communicate with 
each other using the LS protocol only when they are within each other's 
ZoC. When they are outside of each other's ZoC, they could send plain 
texts to each other. 

The major limitation of the LS protocol is that the interaction between 
players is limited by the worst network delay between players. The event 
generation rate is not faster than l/(worst one-way network delay). Even 
with the AS protocol, the interaction between players is still limited by 
the slowest player within the ZoC. This is because the event generation 
rate of each client is not faster than l/(worst one-way network delay 
between players in each other's ZoC). Our proposed optimization reduces 
the dependency of the event generation rate on network delay. 

1 Baughman and Levine observed that a player who has received all other players' hashes but 
has not sent out her own hash can skip sending her hash and just send the plain text [2]. 
2The authors of paper [2] used the term Sphere ofInfluence to mean ZoC. We decided to adopt 
the terminology ZoC used in wargaming [4] to differentiate it from LoS used in Section 3.2. 



Multiplayer Game Cheating Prevention with Pipelined Lockstep Protocol 35 

2. Pipelined Lockstep Protocol 
We have observed that for games that do not require interaction res­

olution at each discrete unit of turn, the sending of a commitment may 
be independent from the sending of the plain texts corresponding to 
previous commitments. This means that, as long as there is no conflict 
between the local player's new decision and other players' pending plain 
texts, the local player can send the hash of this new decision ahead of 
her pending plain texts waiting to be sent. We call this optimization 
Pipelined Lockstep (PL8) Protocol. Let us take a general first person 
shooter game as an example. In such a game, we observed two possible 
cases that could cause an irresolvable interaction problem.3 The first 
case is that no two players can occupy the same location at the same 
time. Therefore, if there are 2 players, 7 units apart, running the L8 
protocol, then we can allow each player to send out at most 3 hashes and 
have 3 pending plain texts without having to worry about any possibil­
ity in causing this case of irresolvable interaction problem. Another case 
occurs when a player successfully shoots another player. For example, 
one player moves to location (2,3) at bucket time t, and at the same 
time another player shoots at location (2,3). The first player is sup­
posed to die and leave the game after this event is displayed at bucket 
time t. However, due to network and synchronization delays, the first 
player does not see the event immediately and may send future moves to 
the second player. After both players have processed the packets corre­
sponding to bucket time t, they see the future moves of the first player. 
Both players can resolve this problem easily by ignoring all the packets 
generated by the first player after bucket time t. The PL8 protocol can 
eliminate the possibility of this irresolvable interaction problem because 
the packets have not been displayed yet. 

Thus the PL8 protocol takes advantage of the presentation delay that 
bucket synchronization adds to the display of the packets. This pre­
sentation delay helps prevent certain potential irresolvable interaction 
problems as we have mentioned above. Baughman and Levine used the 
assumption that packets are displayed immediately once they are re­
ceived or generated [2]. However, we have observed that this constraint 
can be loosened for a large number of real-time multiplayer games, such 
as Age of Empires [3}. 

3Baughman and Levine defined irresolvable intemction as a problem that results when dead 
reckoning is used and interactions are either determined unfairly by a server or potentially 
incorrectly by a distributed host [2J. 



36 Ho Lee, Eric Kozlowski, Scott Lenker, Sugih Jamin 

Local Player Remote Player 

HI H'I 

Basic Lockstep Protocol 

Local Player 

HI 

HZ 
H3 

Remote Player 

H'I 

Pipelined Lockstep Protocol 

Figure 2. Two diagrams showing the difference between the basic lockstep protocol 
and the pipelined lockstep protocol. In this diagram, the pipe size is 3. (For these two 
diagrams, we assume that there are only two players involved in the lockstep protocol 
and that there is no conlict between these turns.) 

The PLS protocol is a generalized version of the LS protocol. How 
fast players can interact with each other depends on the size of the pipe 
between them. For games that require interaction resolution at each 
discrete unit of turn, the pipe size is one, which is the basic LS protocol. 

The PLS protocol has the same assumptions as the LS protocol: there 
is a reliable communication channel between all players; players have 
knowledge of the existence of all other players; each player can authen­
ticate messages from each other player. Under these assumptions, the 
PLS protocol is safe [2] and it provides liveness [2J, as does the basic 
LS protocol. The PLS protocol is safe, meaning that no players can re­
ceive the state of another player before the game rules permit. The PLS 
protocol is live, meaning that the timestamps of the packets each player 
resolves advance monotonically with wall-clock time. The PLS protocol 
can be used along with the definition of ZoC without any conflict. When 
the PLS protocol is used along with ZoC, the amount of traffic can be 
cut down, events can be generated at a faster rate and at the same time 
the same guarantee as the basic LS protocol is provided. 

Figure 2 shows the case for only two players. When there are more 
then two players running the PLS protocol, each player should make 
sure that a plain text is sent only after the receipts of all hashes of the 
same turn from all players. This is to make sure that players cannot 
cheat through cooperation with each other. For example, if player A 
sends her plain text to player B before the receipt of player C's hash, 
player B, on receiving the plain text could send it to player C and give 
player C advantage. 



Multiplayer Game Cheating Prevention with Pipelined Lockstep Protocol 37 

Sometimes packets may not be received before their bucket time due 
to long network delay. Since the PLS protocol does not allow dead 
reckoning, the way to handle late packets is to freeze the bucket until 
the late packets arrive. Bucket synchronization and the LS protocol 
do not affect the correctness of each other. With the support of the 
LS protocol or the PLS protocol, we can prevent lookahead cheating or 
cheating through timestamp modification that could happen in games 
that use bucket synchronization. 

3. Interest Management to Improve Scalability 
To scale games to hundreds of players, clients must minimize band­

width usage. Because of this, interest management has been proposed. 
Interest management means that players only need to receive informa­
tion that is useful for their decision making. The goal of interest man­
agement is to reduce the amount of traffic that each client sends and 
receives. 

There are mainly two types of interest management: multiple multi­
cast group, and zoe that depends on proximity to other players. Figure 
3 gives a general view of interest management. 

Figure 3. A diagram showing how a game board can be broken down. The large 
outer rectangle is the global multicast group. Then the board is broken down into 
four other multicast groups. Players are a member of one or more sub-groups if they 
are near a boundary. The circles represent two playes who have entered each others' 
Zone of Control which extends for a small radius out from each of them. 

3.1. Multiple Multicast Groups 
Let us take a first person shooter game to explain the use of multi­

ple multicast groups. A global multicast group is used for players to 
communicate with global information such as heartbeats, join messages, 
and death messages. The game board can be broken up into overlapping 



38 Ho Lee, Eric Kozlowski, Scott Lenker, Sugih Jamin 

multicast groups to provide more efficient communication. Each multi­
cast group overlaps the others so that players can detect other players 
near the boundary. Each multicast group can be used for players within 
the same group to send position information. Players that are not in the 
same multicast group do not need to know about the positions of the 
other players. 

3.2. Zone of Control and Line of Sight 
A player's Zone of Control (ZoC) is defined as the area of the game 

in which a player can possibly be affected by another player in the next 
turn, and therefore resolution with other players' decisions is required. 
A player's Line of Sight (LoS) is defined as the area of the game that the 
player can see. In a first person shooter game, the ZoC could be defined 
as the maximum shooting distance. LoS includes ZoC and has to be 
greater than ZoC so that players can know other players are approaching. 
To cut down the amount of traffic, players that are not within each 
other's ZoC may not need to send their shooting packets to one another. 

maximum area 

Line of Sight 

2 x PipeSize 
Zone of Control 

Figure 4. A diagram showing how the Line of Sight is defined under the Pipelined 
Lockstep Protocol 

For a 2D game board, it is useful to define ZoC and LoS as two 
concentric circles, the inner circle being ZoC and the outer circle being 
LoS. For players outside the LoS circle, no PLS protocol is required. 
For players inside the ZoC circle, the PLS protocol is mandatory. The 
area between the two circles serves as a buffer zone in which players can 



Multiplayer Game Cheating Prevention with Pipelined Lockstep Protocol 39 

become aware of each other's presence and initiates PLS, as described 
below. 

The definition of zoe does not depend on the pipe size of the PLS 
protocol. However, the radius difference of LoS to zoe should be twice 
the pipe size of the PLS protocol. The pipe size represents the number 
of packets on the way to other players. A player should start running 
the PLS protocol when she enters another player's LoS to make sure 
that when she enters the player's zoe, both players process packets that 
have been negotiated through the PLS protocol. The reason the radii 
difference is twice the pipe size is that, in the worst case, the two players 
approach each other. 

When zoe and LoS are used together with multiple multicast groups, 
the amount of overlap between adjacent multicast groups must be at 
least equal to the radius of LoS. This is to ensure that a player can see 
approaching players and be able to start running the PLS protocol when 
the other players enter her LoS. 

4. Conclusion 
The current cheat-proofing techniques have the drawback of their de­

pendency on network delay. We have looked into the interaction of these 
cheat-proofing techniques with bucket synchronization and proposed an 
optimization, the PLS protocol, which allows players to interact at a 
faster rate, independent of network delay. Our proposal allows faster 
interaction between players while at the same time provides the same 
guarantee as the current synchronization and cheat-proofing techniques. 
Our proposal can be applied to commercial games. 

The use of interest management is useful in reducing the bandwidth 
usage and thus increasing the scalability of multiplayer games. How­
ever, when the PLS protocol is supported, the definition of LoS changes 
according to the pipe size in the PLS protocol. 

References 
[1] Gautier, L. and Diot, C. A Distributed Architecture for Multiplayer Interactive 

Applications on the Internet. IEEE Network, July/August 1999, pp. 6-15. 

[2] Baughman, N. and Levine, B. Cheat-Proof Playout for Centralized and Dis­
tributed Online Games. Proc. IEEE Infocom, April 200l. 

[3] Bettner, P. and Terrano, M. '1500 Archers on a 28.8: Network Programming in 
Age of Empires and Beyond. Proc. of the Game Developers Conference, 2001, 
http://www.gdconf.com/archives/proceedings/2001/ 
terrano_1500arch.doc 

[4] Dunnigan, J.F. Wargames Handbook: How to Play and Design Commercial and 
Professional Wargames. 3rd ed., Writers Club Press, Dec. 2000. 


	4
MULTIPLAYER GAMECHEATING PREVENTIONWITH PIPELINED LOCKSTEP PROTOCOL
	1. Multiplayer Games
	1.1. Network Delay and Bucket Synchronization
	1.2. Cheating and Cheating Techniques
	1.3. Cheat-proofing Protocols and TheirLimitation

	2. Pipelined Lockstep Protocol
	3. Interest Management to Improve Scalability
	3.1. Multiple Multicast Groups
	3.2. Zone of Control and Line of Sight

	4. Conclusion
	References




